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We consider a one-dimensional lattice gas model of strained epitaxy with the elastic strain accounted for
through a finite number of cluster interactions comprising contiguous atomic chains. Interactions of this type
arise in the models of strained epitaxy based on the Frenkel-Kontorova model. Furthermore, the deposited
atoms interact with the substrate via an arbitrary periodic potential of peridthis model is solved exactly
with the use of an appropriately adopted technique developed recently in the theory of protein folding. The
advantage of the proposed approach over the standard transfer-matrix method is that it reduces the problem to
finding the largest eigenvalue of a matrix of slzénstead of 271, which is vital in the case of nanostructures
whereL may measure in hundreds of interatomic distances. Our major conclusion is that the substrate modu-
lation always facilitates the size calibration of self-assembled nanoparticles in one- and two-dimensional
systems.
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. INTRODUCTION H = Es+ Egnain (1)

Periodic arrays of self-assembled nanostructures are egonsists of two terms: the interaction with the substrate via a
pected to find important technological applications in suchperiodic potentiab; with periodLg
fields as optoelectronics, magnetic memory, and other micro-
electronic device§1-3]. A natural way of producing such Es= > vin;, (2
arrays is to perform growth on a substrate that is periodically i
modulated either due to some physical phenomenon, such gheren,=0,1 is thesite occupation number, and an intrac-
surface reconstructid], or by a direct lithographic pattern- pajin energy term which is given by a finite number of cluster

ing [5]. In particular, one- and quasi-one-dimensiofD)  interactions within contiguous atomic chaifist]
chainlike arrays with cluster thickness of one or a few atoms

are expected to bring the technology to the truly atomistic Echain= E ViNiNisy = Mgy (3)
scale[6-13]. il<L

In this paper we consider an exactly solvable 1D model o
strained epitaxy on a modulated substrate. The model is
extension of the previously solved model with a flat substrat
[14,15 and is explained in the next section. The method o
solution, however, is completely different. In this paper we [
will adopt the method proposed in Refl6] for finite sys- E, =>(+1 -V, (4)
tems in connection with the problem of protein folding. In j=1
Sec. Il we present an alternative approach to this method
appropriate to treat our model of strained epitaxy in the ther®S
mody_namlc I|m!t. The matrix equations arising in this I|m|_t V| =E - 2E_, + E . (5)
are discussed in Sec. IV. The formulas for the cluster size
distributions and other quantities of interest are derived ifn Eqg.(3) we included a translationally invariant teivh=;n;
Sec. V. In Sec. VI we will show that the substrate modulationwhich is similar to the substrate interaction term. So we as-
facilitates the size calibration of self-assembled clusters irresume that the mean valueof the substrate potential is ab-
spective of the relative scales of the modulation and the sizeorbed into this term and in the following will consider sub-
calibration. In conclusion we briefly discuss further possiblestrate potentials that have zero mean value:
applications and extensions of the results obtained.

flﬂere L is the period of the system which we will define
elow; V| are numerical coefficients connected with the en-
{rgies of atomic chains of length 14],

LS
> vi=0. (6)
i=1
Il. THE MODEL
Furthermore, we assume that the chemical potential is also

The model we are going to study is an extension of thancluded intoV,, so this term will be used to fix the number
lattice gas model introduced in our previous pagéss15.  of particles in the system. The latter will be called the cov-
Its Hamiltonian erage because the model is supposed to describe epitaxy.
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The values of the coefficientg calculated in the frame-
work of the Frenkel-Kontorova model in R¢fl5] are expo-
nentially small at largé, so the energiek, can be fitted to
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To be specific, we derive all equations for the model of
the preceding section but the same derivation can be repeated
for the general case considered in Ré6].

any desired accuracy by a finite number of them. Therefore, A few words about notation. To simplify the formulas

we assume that their numbky,, is finite and if it exceeds
the period of the substrate potentialthen we choose such
an integerL which is a multiple ofLg that is greater than or

below, some of which are rather cumbersome, in the follow-
ing we will assume that all quantities of the dimension of
energy are divided by the thermodynamic temperakgie

equal tola This number will be called the period of the In case of necessity this temperature dependence can be re-

system.

stored from dimensionality considerations.

Because the method of solution used by us is based on the Thus, instead of the sequence of finite matrices introduced
chain energies, we introduce the energies of interaction ofh Ref.[16] we consider an infinite matrix and the iterative

chains of lengtH with the substrate g<6]

N
W|N= E Vj.

i=N+1-

)

We note that with the use of E¢f) it is easy to show that/"
is a periodic function of bothandN. In particular, from Eq.
(6) it follows that

w'=0.

8

The physical meaning o;ﬁllN is the adsorption energy of the
chain of lengthl whose end atom is placed at site

From Eq.(5) it follows that the internal chain enerdy
for I=L is a linear function ofl (the second derivative is
Zero:

El=L=Eo+El, 9)
where
Eo=§2(1—1)VJ (10)
and
E' = Izw‘, \ (11
=1

The last equation is obtained by the summation of &.
once; Eq.(10) is obtained as the difference betwegnand

scheme associated with it as

Z((’N) 1|e—wl-Bi|g—wl—Bo | g~wf'-Bs|  |o—wlf-Erf Zl()N—l)

z™ 1 o 0 o [...] o zn

zm o 1 0 o .| o ZN-Y

zZ™ml = |of o 1 o . o ZNY

z" o o 0 o |- o Zy
(12

According to this scheme, the partition functiﬁﬂ\‘) of the
system consisting dfl sites is obtained bl iterations of the
above equation starting from the initial vethS,(IO) with all

components equal to zero except the first two:

z0=79=1. (13

As can be seen from Ed12), the only nontrivial matrix
multiplication comes from the first line. The other lines sim-
ply serve to shift the components @Y down by one
position:

ZN=zZND = 27N NS (14

Thus, the nonzero componentsZfY are the partition func-
tions for the numbers of sitdd, N—1,...,1 and the above
two “zero-site” termsZﬁ\,N):qu'i)lzl. The proof of this state-
ment can be carried out by induction. It will be sufficient to

prove it only for the first component &M, i.e., ZBN), be-

E’l at largel. In the above equations we have set the upperause other components are obtained from (E4).

limit of summation to infinity because alf are equal to zero
for largel. This formal point will be useful when we calcu-
late the distribution of chain sizes in Sec. VI.

IIl. METHOD OF SOLUTION

The caseN=1 is easily checked directly. Let us assume
that the above statement is valid for systems of all sizes
smaller thanN. Now we add theNth site and consider all
possible cases.

By adding an empty site we obtain juEng"l) multiplied

The above model can be solved with the use of the apprd?y unity [the first term in the first row of the matrix in Eq.

priately adopted method of R¢fl6]. Its advantage is that, as

(12)]. Now if we want to add a site filled with an atom, there

we will see below, the transfer matrix obtained is muchare the following cases possible. If the deposited atom turns

smaller: of the size of the modulation periadinstead of

out to be isolated, this would mean that the last site of the

21 as in the standard approach. This is an important differinitial system consisting oN-1 sites was empty. Hence, its

ence in the case of nanoscale objects whenay have val-

(N-2)
0

partition function wasZ multiplied by unity, as in the

ues as large as hundreds of lattice spacings which makes tlégse just considered. So we have to additionally multiply it

conventional technique useless.

by the Boltzmann factor corresponding to an isolated atom

In Ref. [16] the 1D model was solved by means of its (we recall that interatomic interactions exist only within con-
mapping onto a 2D system. The derivation presented belowiguous chaing This factor is given by the second term in
is, in our opinion, somewhat simpler because it is based othe first row of the matrix and is the negative exponential of
purely 1D objects. This may allow for generalizations of thethe sum of the interaction with the substrétg'=vy) and the

approach to more complex systems.

contribution from our chemical potenti&; =V;.
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Further terms correspond to the cases when the addalle note that this possibility to make the system of equations

atom becomes a member of the chain of lerigth finite was due to the restriction of elastic forces by the finite
. number of interaction parametévs Being put into a matrix
AZM = ZWN-ED B form, this equation can be used as a finite-size version of the
S o (15) iterative schem¢l2). It can be applied to finite systems with

the finite extent of the cluster interactions. Its additional ad-

where in counting the total number of sites one should addantage over the conventional transfer matrix metkloe-
an empty site separating tfil—1-1)-site system from thé  sides reducing the the matrix sjzis that a system of any
chain. The last two terms are given by the contributions fronsize is treated within the same formalism while in the former
the system witiN-1 atoms and a completely filled system case one needs additional efforts to treat systems sizes that
with the factorsZ given by Eq.(13). are not integer multiples df-1 [28].

The above iteration scheme can be applied to finite sys-
tems, but in this paper we consider in detail its application to

the model of the preceding section in the thermodynamic A. Thermodynamic limit

limit N—co. To this end we first assume that is much The number of unknown variables in the problem under
larger thernL and write down the expression for the partition consideration is formally equal td. But because the system
function on the basis of Eq12) as is periodic, in the thermodynamic limil— o the influence
oL © of boundaries becomes unimportant and this number can be
Z00 = ZN0 4 S e‘WIN‘E'Z,(N‘l) S e‘Wr“E'ZfE'[L‘1> Ireduced toL. Tc_>.do this we assume that asymptotically at
- oLl argeN the partition function behaves as
2 = Z3V |\ ~ X = N+ ¢y + 0(2)], 20
_ 5(N-1) CWNESND , Bl o (N-L-D) o In 1 dn+o()] 20
=ZN V1Y e BzN V1 g BL Y e BZ : : : : .
=1 1oLt wheref is the free energy per site anfl, is of order unity

and is periodic irN with periodL. Equation(20) is a natural
(16) generalization of the expansion of the free energy at fiNite

where the second term in the first equality was transformedn a series of the typ@(N')+O(N°)+O(N ™)+ --.
with the use of Eq(14) and in the second equality the same ~ Substituting Eq(20) into Eq.(19) we obtain an equation
term was further transformed by the change of the summafor z=exp(—f):
tion index froml to | -L. Furthermoref,,, was replaced by
E,+E’L using Eq.(9) for | =L; because of the periodicity]*
is left unchanged.

The second term in the second line can be further trans-

L
(€2 = Dy - 7 ) + 2 7l E In-1-1
=1

L-1
formed as reELY E— (€ EE — )y =0,
2L L 1=1
% RRrARE 2 el EZN Y (21)
L where i =exp ¢;). Writing down the above equation far
+eELY e—wlN—Eo—E'IZI(N—L—l)_ (17) different values ofN and using the periodicity of; we can
=1 obtain a set of linear equations sufficient to find all distinct

values of ;. Because the set is homogeneous, it has non-

Similarly, for the system of siz&l-L Eq. (12) gives trivial solutions only provided its determinant is equal to

L o zero. The latter condition provides us with an equation to
ZND = ZINLD Y = “EzNLD Y e—W|N—E|ZI<N—'-—1>_ definez and hence the free energy per ditdut because the
I=1 I=L+1 matrix in question is, in fact, a transfer matrix of a 2D model

(18) [16], only the largest eigenvalue is of interest. And finding
the latter can be an easier task than the computation of the
Now subtracting this equation multiplied by eéx’L) from  whole determinant, especially in the case of ldrgehen the
the equation fozg‘ we obtain a finite set of equations for the determinant—which is a homogeneous function of the ma-

partition functions: trix elements of ordet.—became difficult to compute with
L sufficient accuracy. Therefore, below we develop a formal-
, _ L N - i i
Z(()N) _ZE)N—l) —eE L[ZE)N L) ‘ZE)N L0714 ‘E'ZS\' I-1) ism based on the largest eigenvalue approach.
I=1
, e N , IV. THE LARGEST EIGENVALUE APPROACH
+eE LE gW (g EoE I _ e—E|)Z(()N—L—I—l), . _ _

I=1 The equations of the preceding section would allow us to

(19) find the grand canonical free energy of the systems a
function of our chemical potential; and the temperaturé
where additionally use has been made of Eadd) and(9). included into the parameters of the system. With this solution
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one can use the standard grand canonical formalism to obtaitheorem 9.2.2 in Ref18)) it has a real positive nondegen-
all thermodynamic quantities of interest. erate eigenvalue with its value exceeding the moduli of all
In the field of heteroepitaxal deposition at the surfaceother eigenvalues. The right eigenvector associated with it
however, one is rarely interested in the thermodynamic quantour vectory) is also positive. It is this eigenvalue and ei-
tities. This is partly because a surface with foreign atomgyenvector that we associate with the physical solution of the
deposited on it is not thermodynamically stali equilib-  eigenvalue probleni25).
rium the deposited atoms should simply dissolve in thebulk  The eigenvalue problem can be treated in two ways. We
and partly because the thermodynamic quantities pertinent toan use the grand canonical formalism by fixwWgand solv-

the surface are not readily measured experimentally. ing the characteristic equation
Instead, one is usually interested in such more easily ob- .
servable quantities as the size distribution of self-assembled deftM-2zl)=0 (27)

atomic clusters. Therefore, in this section we will develop Ayith x given by Eq.(22). An alternative way would be to

method of solution of the equations derived in the precedin%onsider Eq(25) as a linear eigenvalue problem. In this case

section that is suitable for the calculation of such quantities, - . . X e e
To this end we first remark that with the use of the paramete)é é?iggg\slldg]rs)%gﬁ aE(tqh(ezrg odynamic variable which implicitly
1 . .

x=zexpE’) (22

Eqg. (21) can be cast into the form A. Ising model in staggered field

L . . .
N B To illustrate the first of the above approaches we consider
Un-at 2 X7 -1 = 2, (23) & simple problem where the exact solutions can be obtained
=1 independently by the conventional transfer-matrix method.
where This solution is presented in the Appendix.

EoE B L As is known, the Ising model is equivalent to the lattice
d=e" " +e(x - 1). (24) gas mode[17], so the Ising model in the staggered magnetic

It is to be noted that the parametercan be used as a re- field would correspond to a system of the type considered in

placement of our chemical potential variabebecause as is the present paper with alf; equal to zero except the nearest

easily seen neitheE, in Eq. (10) nor the combinatiorE’l neighbor interactiorV, and the variablev;. The substrate
—E, depends oy, so EqQ.(23) depends orv; only through ~ Potential would be a binary-alloy-type potential with two
the parametex. values @ on alternating sites. Thus, the model is periodic
Thus, the set of equatiori3) for L consecutive values of Wfth perlod_L:Z and t’he matrix in Eq(26) with Eg=-V,,
N can be written as a linear eigenvalue problem E'=V;+V,=H, and E'l-E|||-;=V, is
R ~ Vo—v 2_1 +aV2
M= zi (25) M:L< x€ x’=1l+e ) (28)
. . X*-1\x2-1+e2  xe2"
with matrix
. e . o | a . Being substituted into E(27), this matrix leads to a char-
aimte Mot gpThe e | | e | Ge™ | 145 acteristic equation of the sixth order in Because such an
1+ 57 |getei) | et | Gevd | ded equation cannot be straightforwardly solved analytically, we
N dewl | 1457 || Sl | Bewd | Beud checked it numerically. By substituting, from Eq. (A5)
M= . : ;
: : g : : into Eq. (27) with x given by Eq.(22) we found that the
P ] ey I FIP=L) [P = prpe =1 characteristic equation is satisfied to within the accuracy of
Gpos | dgevEs| | doof | 14 55 |detovEn the computation.
(26)
. . . V. CALCULATION OF OBSERVABLE QUANTITIES
where we used Eqg8) and (9) to simplify the matrix ele- Q
ments corresponding te=L. As was mentioned in the preceding section, of major in-

As we see, the eigenvalue problé@b) is not symmetric.  terest in epitaxial studies are those quantities which can be
But from Eq.(23) we can conclude that should be larger directly observed via microscopy techniques. As we will see,
then unity, at least for a system of equations that is consisteffie parametrization of matril with the variablex and the
for all allowed values of the system period. The latter can bginearization of the eigenvalue equation connected to it pro-
chosen as an arbitrarily large integer multiple lofso the  vides us with a convenient formalism for the calculation of
summation in Eq(23) should be convergent. But this is pos- such quantities.
sible only forx>1 because at lardeall other factors under In contrast toV, which is linearly related with the chemi-
the summation sign either oscillatg;) or saturate to con- ¢g| potentialu (V,=-u+consl, the variablex is connected
stant values, as can be seen from the expressiort; [&0.  to other quantities through the nonlinear E22). Thus, the
(24)] and the quantities entering it. change of variables frort; to x is, in fact, an introduction

If x>1 then the matrixM is strictly positive and accord- into the problem of curvilinear coordinates, so care must be
ing to the Perron-Frobenius theoreisee the Corollary to taken in calculating the physical quantities of interest which
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are usually expressed as derivatives wfith respect to some plicitly as the sum of the matrix elements in one rpi8],

parameters. "
Let a be such a parameter and the quantity of interest is _ -1 E'I-E,
dfl da. With the solution of Eq(25) given as the function of z=1 +§1 X € ' (37)

the parametex and « which we will denote simply ag,
where we assumed that interactions extend to infinity and

z2=2(x,a) = exp- ), (290 used the assumption that>1.
and taking into account that the variables are connected NOW using Egs(32), (35), and(36) one obtains
through Eq.(22) we have 1-6 )
C = ——x KeF kB, (38)
ﬂ__zz_w_z(Eﬂ) (30 2
da  zda zox\da da The total number of cluster@n observable quantity
In the case of the variable=V, which is conjugate to the 1-00 | ge
coveraged=df/dV;, one finds c=— 2 Xxe ™ (39
|
dlnz\™t|? .
0=|1-{x—— , (31 can be used to expressin Eq. (37) through observable
ox guantities as
where use has been made of Efl). This allows us to 7=(1-6-0)/(1-9). (40)
rewrite Eq.(30) as
) This expression when substituted in E§8) would give us
df _ 1-60z dE the solution in the form obtained in Refd.4,15 by an in-
= 0 . (32
da zZ Jda da dependent method.
In the systems exhibiting the phenomenon of self- B. Calculation of derivatives

assembly one is usually interested in the size distribution of
the atomic clusters. The concentratigyof clusters of sizé
can be calculated as the statistical average of the pro@ékt

The derivatives of with respect to the parameters that are
necessary to calculate the physical quantities of interest ac-
cording to the formulas derived above can be performed in

M= (L =m)NiNieg - ML = Nisgern) various ways. The straightforward numerical differentiation
K K1 K2 would require solving the matrix equation for very close val-
ues of parameters which might be difficult to do with suffi-
= i — i i . : .
Eln'“ 211:[1 s Jljln'“’ 33 cient accuracy in the case of large An alternative way

would be to use the characteristic equati@d) and to use

where in the last equality we assumed translation invariancfprmulas for the differentiation of the implicitly defined
in the thermodynamic limit. From this equality and from function z(x, @) and the formulas for the derivatives of de-
Egs.(1) and(3) it is seen that the average valuemfcan be  terminant18].
calculated as We found the following approach to be most practical.

9 9 First, in addition to the eigenvalue one has to find also cor-
—=2 + )f =D f. (34 responding left and right eigenvectors of Eg5). We will
N NMer N denote them agy and ¢, respectively, and normalize as
In the calculations of the cluster concentrations in the model

= <mk>:<

under consideration the following relations will be useful: Y-y=1. (41)
DE' =D,Ey=0 (35)  The derivative in Eq(32) is then calculated with the use of
the Hellmann-Feynman theorem as
and —
Z,= M. (42)
DkE| = 5k|' (36)

This formula can also be used to compute the derivative with
respect to to find the coverag® in Eq.(31). The advantage

of such an approach is most clearly seen when the cluster
size distribution is calculated. As is seen from E@) and

26), the derivativeD, of matrix M is a matrix with only
onzero matrix elements

A. Strained epitaxy on a flat substrate

Our second illustrative example is the model of R&#]
where the size calibration on the substrate corresponding
v;=0 in our present model was solved.

Because the substrate potential is fully translationally in- (D,M)y,; mod 11—kt modt = X €5 K Ecexp(- wi ¥ 1),
variant, i.e.Ls=1, the parametdr is defined by the extent of ’
the interactionsv,. But irrespective of the value df it is (43)

easy to see that matrid becomes a circulant matrix so its wherel =1,... L. The modulo of a numbem is defined as
maximum eigenvalue can immediately be written down ex-the positive number from 1 tb. The structure of this matrix
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is such that the corresponding average in B2 can be = Eo _,
written as T +E". (45)
L R— B —_— .
' = X ReE KBS U exp(— Wh) i Obviously a constant substrate potentialoes not influence
% =1 1 @XP( W) i amoat the self-assembly, which formally follows from the fact that
B its interaction with the atomic cluster s so its contribution
=X *eF KB eMh(OL -k - 1), (44)  into the above reduced energy curve id-amdependent con-

where in the second equality we symbolically denoted theStam'

componentwise multiplication by a kind of a dot product Let us con.S|der a potential well of_deptb;§0 and W'dth
: g At large distances from the well its contribution into the

by the arrowed circle we denoted the circular shift of thereOIU(.:ed energy will be growing agw/l, i.e., quite expect-
right vector byL—k-1, which is equivalent to the modular edly it will facilitate the self-assembly. If we consider a pe-
’ riodic array of such wells, then the contribution into the as-

arithmetic used by us. " . .
The advantage of the last formula is that it is valid, as issembly condition will take a more complicated form because

easily seen, for arbitrary valueskflndeed, according to our EE'S time the.lflﬁs’ter can exlperllenc'e .the pene{dm p(;)tentlalt.hSo
method of solution, if we would like to compute the size € curve will have many loca’ minima positioned near the

T - well minima, so the conditior45) will change to
distribution fork>L then we ought to enlarge the matik
m times so thamL is greater theik. Then we should add the E,
interactionsvy, V.1, andV,,, and to compute the derivatives T
in Eq. (34). This could have been done either explicitly or
implicitly via the characteristic equation. In both calculations
the above values of; should be set to zero at the end of the , ey for 4 global minimum to exist the local minima of this

calculation because they were necessary only as source ter ve corresponding to the distant wells should grow with

to compute the derl_v atives. But this means that the true P&istance. It is easy to see that this condition can be written as
riod of the system is stilL and the functions of the en-

Iarge_d system is the same as in the smaII'er system, only E0+min(W|N) <o0. (47)
considered orm periods instead of one. As is easily seen,

because of the periodicity of both ’fde|N, the cyclic prod-  An interesting property of this expression is that it does not
uct in the second line of Eq44) will have the same value nclude information about the interwell distance. Thus, we
irrespective of whether it is calculated with the extendedmay conclude that the substrate aided size calibration will
function or with the one corresponding to the minimal periodiake place even if the self-assembled clusters extend over
L. It is this simplicity of going beyond the system peribd  many wells.

for the size distribution which makes the approach based on Tq check this conclusion let us consider the extreme case
the largest eigenvalue more convenient than other apf the binary-alloy-like potential as in Sec. IV A with;
proaches mentioned above. =+p and let us assume th&, is positive, i.e., there is no
size calibration on a flat substrate. For definiteness let us
consider the chain energies as derived in [R2f] from the
Frenkel-Kontorova model:

E W
~|—°+E’+T'+v, (46)

| —o0

wherew} is the periodic function defined in E¢¢). Thus, in

VI. CLUSTER SIZE DISTRIBUTION WITH MODULATED
SUBSTRATE

It is quite obvious that if the potential of a modulated
substrate is of sufficiently large amplitude, then the atomic
distribution will follow the modulation with atoms gathering
into clusters in the regions with the largest negative potentialvhereVyy is the attractive nearest neighbor interactidns
values. Thus, well separated and sufficiently deep potentian elastic constant,, is the relative misfit between the sub-
wells will provide a necessary arrangement of the clustestrate and the deposit, arid=37/2 is the relaxation length.
array. In the calculations below the strength of the elastic inter-

Less trivial is the observation that we are going to sub-action wasAf2=0.19V,y/. In this case the value &, cal-
stantiate below that the substrate potential and the interculated according to Eq10) was approximately 0.38y|,
atomic forces interfere in such a way that the size calibration.e., positive and quite large in comparison withy. Thus,
of self-assembled clusters atwaysfacilitated by the modu- according to Eq(47) the critical value oy above which the
lation, even in the cases when the period of modulation isize calibration should be expectedis=0.35Vyy/. In Fig. 1
much smaller then the cluster size. the size distributions of the self-assembled clusters at differ-

To show this, let us first consider the condition of the sizeent values of the substrate potential are shown. As can be
calibration in the absence of the substrate. In this case #&een, the distributions are indeed strongly peaked for the
reduces to the existence of a minimum in the per atom envalues of the substrate potential exceeding this value. The
ergy curvek, /I [19]. The existence of a minimum means that difference between the distributions with the substrate poten-
the above dependence exhibits asymptotic growth at largetial amplitude below and above the critical value is illus-
[15]. In our notation this would mean th&t, is negative: trated in Fig. 2. One can see that on lowering the temperature

B =Vl - 0+ AR g gy (g
1=Van(l = 1) m oA [1-e 1. (49
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6l T T ] obtained has a relatively simple analytical structure. This can
st ;zzgi“gz ] be important if the model is used to fit experimental data on
g4 3- v = 05V the size distributions to retrieve the values of the interaction
s 3T 4 v=0TVyx parameters. At present they cannot be reliably calculabed
27 3 1 initio so the calculations are frequently supplemented by a fit
tr 2 1 | to empirical potentials and to the Frenkel-Kontorova model

[25-217.
The technique developed in the present paper can also be
used to study finite systems. Here an additional advantage is
FIG. 1. Size distribution of self-assembled clusters at the inverséhat our formalism remains the same for the system consist-
temperatureg=|Vyy|/kT=50 and coveragé=0.5 for differentval- NG of any number of sitedN while in the conventional
ues of the substrate binary-alloy-like potential. The points cor-  transfer-matrix approach only the systems wiNhpropor-
responding to odd values dfare connected by lines for better tional toL-1 can be treated with the same ef28} while in
visualization. The cluster concentrations corresponding to ksemn  the case ofN incommensurate with.—1 additional efforts
at least seven orders of magnitude smaller then their neighbors coare needed to account for boundary sites.
responding to odd values. Finally, the conclusion that the modulated substrate al-
ways facilitate the size calibration was based on the exis-
in the casev>u, the atoms strive to gather into size cali- t€nce of a global minimum in the reduced energy and is not
brated clusters while in the case<v, they tend to gather connected to the specific model used. Therefore, this conclu-
into a single large cluster. sion should be valid also in the case of 2D self-assembly
because both the chemical and the elastic forces act indepen-
dently along two orthogonal directions, so the reasoning of
the previous section which led us to the size calibration cri-
In this paper we considered a one-dimensional model oferion is valid for each directiof20,29. Thus, we conclude
strained epitaxy on a modulated substrate. Besides being ahat by periodically modulating the surface potential in two
exactly solvable model system to study some general questthogonal directions would always facilitate the self-
tions of self-assembly on modulated substrates, this modelssembly of size calibrated clusters.
can also serve to interpret experimental data on real one- or
quasi-one-dimensional systems like those studied, e.g., in the
papers cited in the Introduction or in Ref§,21-24. Such

an application s facilitateq _by the fapt that the model is The authors acknowledge CNRS for support of their col-
sufficiently general by admitting an arbitrary substrate PO horation and CINES for computational facilities. One of
tial and an infinite number of cluster interactions of arbitrary,, authorgV.T.) expresses his gratitude to University Louis

strength. Of course, the restriction to chain interactions i i de Strasbourg and IPCMS for their hospitality.
rather severe but it may be hoped that the method of solution

proposed in Sec. Il can be extended to more general models.

5 10 15 20 25 30
Cluster length (atoms)
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This is supported by the fact that in Refd4,15 we were APPENDIX: ISING MODEL IN STAGGERED FIELD
able to exactly solve the model on a flat substrate with addi- - . ]
tional next nearest neighbor interactions present. In order to facilitate comparison with the model of the

An additional advantage of our solution with respect tomain text we use the formalism of the lattice gas model to

the canonical transfer-matrix method besides reducing thwhich the Ising model is equivalefee, e.g., Re{.17]).
dimension of the matrix from'2? to L is that the solution With the nearest neighbor interatomic interaction denoted

V, and the substrate potential taking the valdgs-v and
V,—v on alternating sites the partition function can be writ-

1 b ten as

g 1
s 05 z= 2 - 2 11 eXP(—Vzni”i+1—‘(vini+vi+1ni+1)>-

n,=0,1 nN=0,1 i 2
(A1)

5 15 25 35 45
Cluster length (atoms) This can be written as a product o2 matrices

FIG. 2. Size distributions for two different values of the periodic 1 g (Vizv)2

substrate potential: one value=0.3Vyy| lower than v, = ( VT2 - ), (A2)
e T e

~0.39Vyn| and the other value greater thag whereuv, is the

critical value for the size calibration. The lines are drawn in the

same way as in Fig. 1. It is seen that on lowering the temperatur@hereH=V;+V,.
the size distribution of calibrated clusters becomes taller and nar- In order to represeri as a power of a transfer matrix we
rower while the distribution for <v. broadens and tends to zero. should multiply matrices(A2) on two neighboring sites
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because the elementary cell of the system contains two sites: A2 =eH[coshH + "2 coshu
+V(coshH + e"2 coshv)? - (1 -€"2)?].  (A4)
1+ e—Vl—v e—(Vl—v)/Z + e—(Vl+v)/2—H ) . )
tt.= (Vymo)2 o clVybo)i2H Vet oH We denoted this eigenvalue as the square.obecause it
e e+ e et +e corresponds to two sites. The quantity to be compared with

(A3)  the partition function per site in Sec. IV A is
A, = e[ JcosR(H/2) + €2 sinfR(v/2)
The largest eigenvalue of this matrix is +\sinfR(H/2) + €2 cosi(v/2)]. (A5)
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