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We consider a one-dimensional lattice gas model of strained epitaxy with the elastic strain accounted for
through a finite number of cluster interactions comprising contiguous atomic chains. Interactions of this type
arise in the models of strained epitaxy based on the Frenkel-Kontorova model. Furthermore, the deposited
atoms interact with the substrate via an arbitrary periodic potential of periodL. This model is solved exactly
with the use of an appropriately adopted technique developed recently in the theory of protein folding. The
advantage of the proposed approach over the standard transfer-matrix method is that it reduces the problem to
finding the largest eigenvalue of a matrix of sizeL instead of 2L−1, which is vital in the case of nanostructures
whereL may measure in hundreds of interatomic distances. Our major conclusion is that the substrate modu-
lation always facilitates the size calibration of self-assembled nanoparticles in one- and two-dimensional
systems.
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I. INTRODUCTION

Periodic arrays of self-assembled nanostructures are ex-
pected to find important technological applications in such
fields as optoelectronics, magnetic memory, and other micro-
electronic devicesf1–3g. A natural way of producing such
arrays is to perform growth on a substrate that is periodically
modulated either due to some physical phenomenon, such as
surface reconstructionf4g, or by a direct lithographic pattern-
ing f5g. In particular, one- and quasi-one-dimensionals1Dd
chainlike arrays with cluster thickness of one or a few atoms
are expected to bring the technology to the truly atomistic
scalef6–13g.

In this paper we consider an exactly solvable 1D model of
strained epitaxy on a modulated substrate. The model is an
extension of the previously solved model with a flat substrate
f14,15g and is explained in the next section. The method of
solution, however, is completely different. In this paper we
will adopt the method proposed in Ref.f16g for finite sys-
tems in connection with the problem of protein folding. In
Sec. III we present an alternative approach to this method
appropriate to treat our model of strained epitaxy in the ther-
modynamic limit. The matrix equations arising in this limit
are discussed in Sec. IV. The formulas for the cluster size
distributions and other quantities of interest are derived in
Sec. V. In Sec. VI we will show that the substrate modulation
facilitates the size calibration of self-assembled clusters irre-
spective of the relative scales of the modulation and the size
calibration. In conclusion we briefly discuss further possible
applications and extensions of the results obtained.

II. THE MODEL

The model we are going to study is an extension of the
lattice gas model introduced in our previous papersf14,15g.
Its Hamiltonian

H = Es + Echain s1d

consists of two terms: the interaction with the substrate via a
periodic potentialvi with periodLs

Es = o
i

vini , s2d

whereni =0,1 is thesite occupation number, and an intrac-
hain energy term which is given by a finite number of cluster
interactions within contiguous atomic chainsf14g

Echain= o
i,løL

Vlnini+1¯ ni+sl−1d. s3d

Here L is the period of the system which we will define
below; Vl are numerical coefficients connected with the en-
ergies of atomic chains of lengthl f14g,

El = o
j=1

l

sl + 1 − jdVj , s4d

as

Vl = El − 2El−1 + El−2. s5d

In Eq. s3d we included a translationally invariant termV1oini
which is similar to the substrate interaction term. So we as-
sume that the mean valuev̄ of the substrate potential is ab-
sorbed into this term and in the following will consider sub-
strate potentials that have zero mean value:

o
i=1

Ls

vi = 0. s6d

Furthermore, we assume that the chemical potential is also
included intoV1, so this term will be used to fix the number
of particles in the system. The latter will be called the cov-
erage because the model is supposed to describe epitaxy.
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The values of the coefficientsVl calculated in the frame-
work of the Frenkel-Kontorova model in Ref.f15g are expo-
nentially small at largel, so the energiesEl can be fitted to
any desired accuracy by a finite number of them. Therefore,
we assume that their numberlmax is finite and if it exceeds
the period of the substrate potentialLs then we choose such
an integerL which is a multiple ofLs that is greater than or
equal tolmax. This number will be called the period of the
system.

Because the method of solution used by us is based on the
chain energies, we introduce the energies of interaction of
chains of lengthl with the substrate asf16g

wl
N = o

i=N+1−l

N

vi . s7d

We note that with the use of Eq.s6d it is easy to show thatwl
N

is a periodic function of bothl andN. In particular, from Eq.
s6d it follows that

wL
N = 0. s8d

The physical meaning ofwl
N is the adsorption energy of the

chain of lengthl whose end atom is placed at siteN.
From Eq.s5d it follows that the internal chain energyEl

for l ùL is a linear function ofl sthe second derivative is
zerod:

uElulùL = E0 + E8l , s9d

where

E0 = o
j=2

`

s1 − jdVj s10d

and

E8 = o
l=1

`

Vl . s11d

The last equation is obtained by the summation of Eq.s5d
once; Eq.s10d is obtained as the difference betweenEl and
E8l at largel. In the above equations we have set the upper
limit of summation to infinity because allVl are equal to zero
for large l. This formal point will be useful when we calcu-
late the distribution of chain sizes in Sec. VI.

III. METHOD OF SOLUTION

The above model can be solved with the use of the appro-
priately adopted method of Ref.f16g. Its advantage is that, as
we will see below, the transfer matrix obtained is much
smaller: of the size of the modulation periodL instead of
2L−1 as in the standard approach. This is an important differ-
ence in the case of nanoscale objects whenL may have val-
ues as large as hundreds of lattice spacings which makes the
conventional technique useless.

In Ref. f16g the 1D model was solved by means of its
mapping onto a 2D system. The derivation presented below
is, in our opinion, somewhat simpler because it is based on
purely 1D objects. This may allow for generalizations of the
approach to more complex systems.

To be specific, we derive all equations for the model of
the preceding section but the same derivation can be repeated
for the general case considered in Ref.f16g.

A few words about notation. To simplify the formulas
below, some of which are rather cumbersome, in the follow-
ing we will assume that all quantities of the dimension of
energy are divided by the thermodynamic temperaturekBT.
In case of necessity this temperature dependence can be re-
stored from dimensionality considerations.

Thus, instead of the sequence of finite matrices introduced
in Ref. f16g we consider an infinite matrix and the iterative
scheme associated with it as

s12d

According to this scheme, the partition functionZ0
sNd of the

system consisting ofN sites is obtained byN iterations of the
above equation starting from the initial vectorZl

s0d with all
components equal to zero except the first two:

Z0
s0d = Z1

s0d = 1. s13d

As can be seen from Eq.s12d, the only nontrivial matrix
multiplication comes from the first line. The other lines sim-
ply serve to shift the components ofZsN−1d down by one
position:

Zl
sNd = Zl−1

sN−1d = ¯ = Z0
sN−ld, N . l . s14d

Thus, the nonzero components ofZ sNd are the partition func-
tions for the numbers of sitesN, N−1, . . . ,1 and the above
two “zero-site” termsZN

sNd=ZN+1
sNd =1. The proof of this state-

ment can be carried out by induction. It will be sufficient to
prove it only for the first component ofZ sNd, i.e., Z0

sNd, be-
cause other components are obtained from Eq.s14d.

The caseN=1 is easily checked directly. Let us assume
that the above statement is valid for systems of all sizes
smaller thanN. Now we add theNth site and consider all
possible cases.

By adding an empty site we obtain justZ0
sN−1d multiplied

by unity fthe first term in the first row of the matrix in Eq.
s12dg. Now if we want to add a site filled with an atom, there
are the following cases possible. If the deposited atom turns
out to be isolated, this would mean that the last site of the
initial system consisting ofN−1 sites was empty. Hence, its
partition function wasZ0

sN−2d multiplied by unity, as in the
case just considered. So we have to additionally multiply it
by the Boltzmann factor corresponding to an isolated atom
swe recall that interatomic interactions exist only within con-
tiguous chainsd. This factor is given by the second term in
the first row of the matrix and is the negative exponential of
the sum of the interaction with the substratesw1

N=vNd and the
contribution from our chemical potentialE1=V1.
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Further terms correspond to the cases when the added
atom becomes a member of the chain of lengthl:

s15d

where in counting the total number of sites one should add
an empty site separating thesN− l −1d-site system from thel
chain. The last two terms are given by the contributions from
the system withN−1 atoms and a completely filled system
with the factorsZ given by Eq.s13d.

The above iteration scheme can be applied to finite sys-
tems, but in this paper we consider in detail its application to
the model of the preceding section in the thermodynamic
limit N→`. To this end we first assume thatN is much
larger thenL and write down the expression for the partition
function on the basis of Eq.s12d as

Z0
sNd = Z0

sN−1d + o
l=1

2L

e−wl
N−ElZl

sN−1d + o
l=2L+1

`

e−wl
N−ElZl−L

sN−L−1d

= Z0
sN−1d + o

l=1

2L

e−wl
N−ElZl

sN−1d + e−E8L o
l=L+1

`

e−wl
N−ElZl

sN−L−1d,

s16d

where the second term in the first equality was transformed
with the use of Eq.s14d and in the second equality the same
term was further transformed by the change of the summa-
tion index froml to l −L. Furthermore,El+L was replaced by
El +E8L using Eq.s9d for l ùL; because of the periodicitywl

N

is left unchanged.
The second term in the second line can be further trans-

formed as

o
l=1

2L

e−wl
N−ElZl

sN−1d = o
l=1

L

e−wl
N−ElZl

sN−1d

+ e−E8Lo
l=1

L

e−wl
N−E0−E8lZl

sN−L−1d. s17d

Similarly, for the system of sizeN−L Eq. s12d gives

Z0
sN−Ld = Z0

sN−L−1d + o
l=1

L

e−wl
N−ElZl

sN−L−1d + o
l=L+1

`

e−wl
N−ElZl

sN−L−1d.

s18d

Now subtracting this equation multiplied by exps−E8Ld from
the equation forZ0

N we obtain a finite set of equations for the
partition functions:

Z0
sNd − Z0

sN−1d = e−E8LfZ0
sN−Ld − Z0

sN−L−1dg + o
l=1

L

e−wl
N−ElZ0

sN−l−1d

+ e−E8Lo
l=1

L−1

e−wl
N
se−E0−E8l − e−EldZ0

sN−L−l−1d,

s19d

where additionally use has been made of Eqs.s14d and s9d.

We note that this possibility to make the system of equations
finite was due to the restriction of elastic forces by the finite
number of interaction parametersVl. Being put into a matrix
form, this equation can be used as a finite-size version of the
iterative schemes12d. It can be applied to finite systems with
the finite extent of the cluster interactions. Its additional ad-
vantage over the conventional transfer matrix methodsbe-
sides reducing the the matrix sized is that a system of any
size is treated within the same formalism while in the former
case one needs additional efforts to treat systems sizes that
are not integer multiples ofL−1 f28g.

A. Thermodynamic limit

The number of unknown variables in the problem under
consideration is formally equal toN. But because the system
is periodic, in the thermodynamic limitN→` the influence
of boundaries becomes unimportant and this number can be
reduced toL. To do this we assume that asymptotically at
largeN the partition function behaves as

uZ0
sNduN→` , expf− Nf + fN + os1dg, s20d

where f is the free energy per site andfN is of order unity
and is periodic inN with periodL. Equations20d is a natural
generalization of the expansion of the free energy at finiteN
in a series of the typeOsN1d+OsN0d+OsN−1d+¯.

Substituting Eq.s20d into Eq. s19d we obtain an equation
for z=exps−fd:

se−E8Lz−L − 1dscN − z−1cN−1d + o
l=1

L

z−l−1e−wl
N−ElcN−l−1

+ e−E8Lz−Lo
l=1

L−1

z−l−1e−wl
N
se−E0−E8l − e−EldcN−l−1 = 0,

s21d

whereci =expsfid. Writing down the above equation forL
different values ofN and using the periodicity ofci we can
obtain a set of linear equations sufficient to find all distinct
values ofci. Because the set is homogeneous, it has non-
trivial solutions only provided its determinant is equal to
zero. The latter condition provides us with an equation to
definez and hence the free energy per sitef. But because the
matrix in question is, in fact, a transfer matrix of a 2D model
f16g, only the largest eigenvalue is of interest. And finding
the latter can be an easier task than the computation of the
whole determinant, especially in the case of largeL when the
determinant—which is a homogeneous function of the ma-
trix elements of orderL—became difficult to compute with
sufficient accuracy. Therefore, below we develop a formal-
ism based on the largest eigenvalue approach.

IV. THE LARGEST EIGENVALUE APPROACH

The equations of the preceding section would allow us to
find the grand canonical free energy of the systemf as a
function of our chemical potentialV1 and the temperatureT
included into the parameters of the system. With this solution
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one can use the standard grand canonical formalism to obtain
all thermodynamic quantities of interest.

In the field of heteroepitaxal deposition at the surface,
however, one is rarely interested in the thermodynamic quan-
tities. This is partly because a surface with foreign atoms
deposited on it is not thermodynamically stablesat equilib-
rium the deposited atoms should simply dissolve in the bulkd
and partly because the thermodynamic quantities pertinent to
the surface are not readily measured experimentally.

Instead, one is usually interested in such more easily ob-
servable quantities as the size distribution of self-assembled
atomic clusters. Therefore, in this section we will develop a
method of solution of the equations derived in the preceding
section that is suitable for the calculation of such quantities.
To this end we first remark that with the use of the parameter

x = zexpsE8d s22d

Eq. s21d can be cast into the form

cN−1 + o
l=1

L

x−le−wl
N
dlcN−l−1 = zcN, s23d

where

dl = eE8l−El + e−E0/sxL − 1d. s24d

It is to be noted that the parameterx can be used as a re-
placement of our chemical potential variableV1 because as is
easily seen neitherE0 in Eq. s10d nor the combinationE8l
−El depends onV1, so Eq.s23d depends onV1 only through
the parameterx.

Thus, the set of equationss23d for L consecutive values of
N can be written as a linear eigenvalue problem

M̂c = zc s25d

with matrix

s26d

where we used Eqs.s8d and s9d to simplify the matrix ele-
ments corresponding tol =L.

As we see, the eigenvalue problems25d is not symmetric.
But from Eq. s23d we can conclude thatx should be larger
then unity, at least for a system of equations that is consistent
for all allowed values of the system period. The latter can be
chosen as an arbitrarily large integer multiple ofL so the
summation in Eq.s23d should be convergent. But this is pos-
sible only forx.1 because at largel all other factors under
the summation sign either oscillatescid or saturate to con-
stant values, as can be seen from the expressions fordl fEq.
s24dg and the quantities entering it.

If x.1 then the matrixM̂ is strictly positive and accord-
ing to the Perron-Frobenius theoremssee the Corollary to

Theorem 9.2.2 in Ref.f18gd it has a real positive nondegen-
erate eigenvalue with its value exceeding the moduli of all
other eigenvalues. The right eigenvector associated with it
sour vectorcd is also positive. It is this eigenvalue and ei-
genvector that we associate with the physical solution of the
eigenvalue problems25d.

The eigenvalue problem can be treated in two ways. We
can use the grand canonical formalism by fixingV1 and solv-
ing the characteristic equation

detsM̂ − zÎd = 0 s27d

with x given by Eq.s22d. An alternative way would be to
consider Eq.s25d as a linear eigenvalue problem. In this case
x is considered as a thermodynamic variable which implicitly
definesV1 through Eq.s22d.

A. Ising model in staggered field

To illustrate the first of the above approaches we consider
a simple problem where the exact solutions can be obtained
independently by the conventional transfer-matrix method.
This solution is presented in the Appendix.

As is known, the Ising model is equivalent to the lattice
gas modelf17g, so the Ising model in the staggered magnetic
field would correspond to a system of the type considered in
the present paper with allVl equal to zero except the nearest
neighbor interactionV2 and the variableV1. The substrate
potential would be a binary-alloy-type potential with two
values ±v on alternating sites. Thus, the model is periodic
with period L=2 and the matrix in Eq.s26d with E0=−V2,
E8=V1+V2;H, and uE8l −Elul=1=V2 is

M̂ =
1

x2 − 1
S xeV2−v x2 − 1 +eV2

x2 − 1 +eV2 xeV2+v D . s28d

Being substituted into Eq.s27d, this matrix leads to a char-
acteristic equation of the sixth order inz. Because such an
equation cannot be straightforwardly solved analytically, we
checked it numerically. By substitutingl+ from Eq. sA5d
into Eq. s27d with x given by Eq.s22d we found that the
characteristic equation is satisfied to within the accuracy of
the computation.

V. CALCULATION OF OBSERVABLE QUANTITIES

As was mentioned in the preceding section, of major in-
terest in epitaxial studies are those quantities which can be
directly observed via microscopy techniques. As we will see,

the parametrization of matrixM̂ with the variablex and the
linearization of the eigenvalue equation connected to it pro-
vides us with a convenient formalism for the calculation of
such quantities.

In contrast toV1 which is linearly related with the chemi-
cal potentialm sV1=−m+constd, the variablex is connected
to other quantities through the nonlinear Eq.s22d. Thus, the
change of variables fromV1 to x is, in fact, an introduction
into the problem of curvilinear coordinates, so care must be
taken in calculating the physical quantities of interest which
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are usually expressed as derivatives off with respect to some
parameters.

Let a be such a parameter and the quantity of interest is
]f /]a. With the solution of Eq.s25d given as the function of
the parameterx anda which we will denote simply asz,

z= zsx,ad = exps− fd, s29d

and taking into account that the variables are connected
through Eq.s22d we have

df

da
= −

1

z

]z

]a
−

x

z

]z

]x
SdE8

da
−

df

da
D . s30d

In the case of the variablea=V1 which is conjugate to the
coverageu=df /dV1, one finds

u = F1 −Sx
] ln z

]x
D−1G−1

, s31d

where use has been made of Eq.s11d. This allows us to
rewrite Eq.s30d as

df

da
= −

1 − u

z

]z

]a
+ u

dE8

da
. s32d

In the systems exhibiting the phenomenon of self-
assembly one is usually interested in the size distribution of
the atomic clusters. The concentrationck of clusters of sizek
can be calculated as the statistical average of the productf16g

mk = s1 − nidnini+1¯ ni+ks1 − ni+k+1d

= p
j=1

k

ni+j − 2p
j=1

k+1

ni+j + p
j=1

k+2

ni+j , s33d

where in the last equality we assumed translation invariance
in the thermodynamic limit. From this equality and from
Eqs.s1d ands3d it is seen that the average value ofmk can be
calculated as

ck ; kmkl = S ]

]Vk
− 2

]

]Vk+1
+

]

]Vk+2
D f ; Dkf . s34d

In the calculations of the cluster concentrations in the model
under consideration the following relations will be useful:

DkE8 = DkE0 = 0 s35d

and

DkEl = dkl. s36d

A. Strained epitaxy on a flat substrate

Our second illustrative example is the model of Ref.f14g
where the size calibration on the substrate corresponding to
vi =0 in our present model was solved.

Because the substrate potential is fully translationally in-
variant, i.e.,Ls=1, the parameterL is defined by the extent of
the interactionsVl. But irrespective of the value ofL it is

easy to see that matrixM̂ becomes a circulant matrix so its
maximum eigenvalue can immediately be written down ex-

plicitly as the sum of the matrix elements in one rowf18g,

z= 1 +o
l=1

`

x−leE8l−El , s37d

where we assumed that interactions extend to infinity and
used the assumption thatx.1.

Now using Eqs.s32d, s35d, ands36d one obtains

ck =
1 − u

z
x−keE8k−Ek. s38d

The total number of clusterssan observable quantityd

c =
1 − u

z
o

l

x−leE8l−El s39d

can be used to expressz in Eq. s37d through observable
quantities as

z= s1 − u − cd/s1 − ud. s40d

This expression when substituted in Eq.s38d would give us
the solution in the form obtained in Refs.f14,15g by an in-
dependent method.

B. Calculation of derivatives

The derivatives ofz with respect to the parameters that are
necessary to calculate the physical quantities of interest ac-
cording to the formulas derived above can be performed in
various ways. The straightforward numerical differentiation
would require solving the matrix equation for very close val-
ues of parameters which might be difficult to do with suffi-
cient accuracy in the case of largeL. An alternative way
would be to use the characteristic equations27d and to use
formulas for the differentiation of the implicitly defined
function zsx,ad and the formulas for the derivatives of de-
terminantsf18g.

We found the following approach to be most practical.
First, in addition to the eigenvalue one has to find also cor-
responding left and right eigenvectors of Eq.s25d. We will

denote them asc̄ andc, respectively, and normalize as

c̄ · c = 1. s41d

The derivative in Eq.s32d is then calculated with the use of
the Hellmann-Feynman theorem as

za8 = c̄Ma8c. s42d

This formula can also be used to compute the derivative with
respect tox to find the coverageu in Eq. s31d. The advantage
of such an approach is most clearly seen when the cluster
size distribution is calculated. As is seen from Eqs.s36d and

s26d, the derivativeDk of matrix M̂ is a matrix with only
nonzero matrix elements

sDkM̂dk+l mod L,l−k−1 mod L = x−keE8k−Ek exps− wk
l−k−1d,

s43d

where l =1, . . . ,L. The modulo of a numberm is defined as
the positive number from 1 toL. The structure of this matrix
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is such that the corresponding average in Eq.s42d can be
written as

zk8 = x−keE8k−Eko
l=1

L

c̄l exps− wk
l dcl−k−1modL

= x−keE8k−Ekc̄ ·e−wkcs�L − k − 1d, s44d

where in the second equality we symbolically denoted the
componentwise multiplication by a kind of a dot product
whose definition should be understood from the first line and
by the arrowed circle we denoted the circular shift of the
right vector byL−k−1, which is equivalent to the modular
arithmetic used by us.

The advantage of the last formula is that it is valid, as is
easily seen, for arbitrary values ofk. Indeed, according to our
method of solution, if we would like to compute the size

distribution fork.L then we ought to enlarge the matrixM̂
m times so thatmL is greater thenk. Then we should add the
interactionsVk, Vk+1, andVk+2 and to compute the derivatives
in Eq. s34d. This could have been done either explicitly or
implicitly via the characteristic equation. In both calculations
the above values ofVi should be set to zero at the end of the
calculation because they were necessary only as source terms
to compute the derivatives. But this means that the true pe-
riod of the system is stillL and the functionc of the en-
larged system is the same as in the smaller system, only
considered onm periods instead of one. As is easily seen,
because of the periodicity of bothc andwl

N, the cyclic prod-
uct in the second line of Eq.s44d will have the same value
irrespective of whether it is calculated with the extended
function or with the one corresponding to the minimal period
L. It is this simplicity of going beyond the system periodL
for the size distribution which makes the approach based on
the largest eigenvalue more convenient than other ap-
proaches mentioned above.

VI. CLUSTER SIZE DISTRIBUTION WITH MODULATED
SUBSTRATE

It is quite obvious that if the potential of a modulated
substrate is of sufficiently large amplitude, then the atomic
distribution will follow the modulation with atoms gathering
into clusters in the regions with the largest negative potential
values. Thus, well separated and sufficiently deep potential
wells will provide a necessary arrangement of the cluster
array.

Less trivial is the observation that we are going to sub-
stantiate below that the substrate potential and the inter-
atomic forces interfere in such a way that the size calibration
of self-assembled clusters isalwaysfacilitated by the modu-
lation, even in the cases when the period of modulation is
much smaller then the cluster size.

To show this, let us first consider the condition of the size
calibration in the absence of the substrate. In this case it
reduces to the existence of a minimum in the per atom en-
ergy curveEl / l f19g. The existence of a minimum means that
the above dependence exhibits asymptotic growth at largel
f15g. In our notation this would mean thatE0 is negative:

UEl

l
U

l→`

,
E0

l
+ E8. s45d

Obviously a constant substrate potentialv̄ does not influence
the self-assembly, which formally follows from the fact that
its interaction with the atomic cluster isv̄l so its contribution
into the above reduced energy curve is anl-independent con-
stant.

Let us consider a potential well of depthvw,0 and width
w. At large distances from the well its contribution into the
reduced energy will be growing asvww/ l, i.e., quite expect-
edly it will facilitate the self-assembly. If we consider a pe-
riodic array of such wells, then the contribution into the as-
sembly condition will take a more complicated form because
this time the cluster can experience the periodic potential. So
the curve will have many local minima positioned near the
well minima, so the conditions45d will change to

UEl

l
U

l→`

,
E0

l
+ E8 +

wl
l

l
+ v̄, s46d

wherewl
l is the periodic function defined in Eq.s7d. Thus, in

order for a global minimum to exist the local minima of this
curve corresponding to the distant wells should grow with
distance. It is easy to see that this condition can be written as

E0 + minswl
Nd , 0. s47d

An interesting property of this expression is that it does not
include information about the interwell distance. Thus, we
may conclude that the substrate aided size calibration will
take place even if the self-assembled clusters extend over
many wells.

To check this conclusion let us consider the extreme case
of the binary-alloy-like potential as in Sec. IV A withvi
= ±v and let us assume thatE0 is positive, i.e., there is no
size calibration on a flat substrate. For definiteness let us
consider the chain energies as derived in Ref.f20g from the
Frenkel-Kontorova model:

El = VNNsl − 1d + Afm
2 sl − 1d2

2L
f1 − e−2L/sl−1dg, s48d

whereVNN is the attractive nearest neighbor interaction,A is
an elastic constant,fm is the relative misfit between the sub-
strate and the deposit, andL=3p /2 is the relaxation length.

In the calculations below the strength of the elastic inter-
action wasAfm

2 =0.15uVNNu. In this case the value ofE0 cal-
culated according to Eq.s10d was approximately 0.35uVNNu,
i.e., positive and quite large in comparison withVNN. Thus,
according to Eq.s47d the critical value ofv above which the
size calibration should be expected isvc=0.35uVNNu. In Fig. 1
the size distributions of the self-assembled clusters at differ-
ent values of the substrate potential are shown. As can be
seen, the distributions are indeed strongly peaked for the
values of the substrate potential exceeding this value. The
difference between the distributions with the substrate poten-
tial amplitude below and above the critical value is illus-
trated in Fig. 2. One can see that on lowering the temperature
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in the casev.vc the atoms strive to gather into size cali-
brated clusters while in the casev,vc they tend to gather
into a single large cluster.

VII. CONCLUSION

In this paper we considered a one-dimensional model of
strained epitaxy on a modulated substrate. Besides being an
exactly solvable model system to study some general ques-
tions of self-assembly on modulated substrates, this model
can also serve to interpret experimental data on real one- or
quasi-one-dimensional systems like those studied, e.g., in the
papers cited in the Introduction or in Refs.f6,21–24g. Such
an application is facilitated by the fact that the model is
sufficiently general by admitting an arbitrary substrate poten-
tial and an infinite number of cluster interactions of arbitrary
strength. Of course, the restriction to chain interactions is
rather severe but it may be hoped that the method of solution
proposed in Sec. III can be extended to more general models.
This is supported by the fact that in Refs.f14,15g we were
able to exactly solve the model on a flat substrate with addi-
tional next nearest neighbor interactions present.

An additional advantage of our solution with respect to
the canonical transfer-matrix method besides reducing the
dimension of the matrix from 2L−1 to L is that the solution

obtained has a relatively simple analytical structure. This can
be important if the model is used to fit experimental data on
the size distributions to retrieve the values of the interaction
parameters. At present they cannot be reliably calculatedab
initio so the calculations are frequently supplemented by a fit
to empirical potentials and to the Frenkel-Kontorova model
f25–27g.

The technique developed in the present paper can also be
used to study finite systems. Here an additional advantage is
that our formalism remains the same for the system consist-
ing of any number of sitesN while in the conventional
transfer-matrix approach only the systems withN propor-
tional toL−1 can be treated with the same easef28g while in
the case ofN incommensurate withL−1 additional efforts
are needed to account for boundary sites.

Finally, the conclusion that the modulated substrate al-
ways facilitate the size calibration was based on the exis-
tence of a global minimum in the reduced energy and is not
connected to the specific model used. Therefore, this conclu-
sion should be valid also in the case of 2D self-assembly
because both the chemical and the elastic forces act indepen-
dently along two orthogonal directions, so the reasoning of
the previous section which led us to the size calibration cri-
terion is valid for each directionf20,29g. Thus, we conclude
that by periodically modulating the surface potential in two
orthogonal directions would always facilitate the self-
assembly of size calibrated clusters.
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APPENDIX: ISING MODEL IN STAGGERED FIELD

In order to facilitate comparison with the model of the
main text we use the formalism of the lattice gas model to
which the Ising model is equivalentssee, e.g., Ref.f17gd.

With the nearest neighbor interatomic interaction denoted
V2 and the substrate potential taking the valuesV1+v and
V1−v on alternating sites the partition function can be writ-
ten as

Z = o
n1=0,1

¯ o
nN=0,1

p
i

expS− V2nini+1 −
1

2
svini + vi+1ni+1dD .

sA1d

This can be written as a product of 232 matrices

t̂i = S 1 e−sV1±vd/2

e−sV17vd/2 e−H D , sA2d

whereH=V1+V2.
In order to representZ as a power of a transfer matrix we

should multiply matricessA2d on two neighboring sites

FIG. 1. Size distribution of self-assembled clusters at the inverse
temperatureb= uVNNu /kT=50 and coverageu=0.5 for different val-
ues of the substrate binary-alloy-like potential ±v. The points cor-
responding to odd values ofl are connected by lines for better
visualization. The cluster concentrations corresponding to evenl are
at least seven orders of magnitude smaller then their neighbors cor-
responding to odd values.

FIG. 2. Size distributions for two different values of the periodic
substrate potential: one valuev=0.3uVNNu lower than vc

<0.35uVNNu and the other value greater thanvc, wherevc is the
critical value for the size calibration. The lines are drawn in the
same way as in Fig. 1. It is seen that on lowering the temperature
the size distribution of calibrated clusters becomes taller and nar-
rower while the distribution forv,vc broadens and tends to zero.
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because the elementary cell of the system contains two sites:

t̂i t̂i+1 = S 1 + e−V1−v e−sV1−vd/2 + e−sV1+vd/2−H

e−sV1−vd/2 + e−sV1+vd/2−H e−V1+v + e−2H D .

sA3d

The largest eigenvalue of this matrix is

l+
2 = e−HfcoshH + eV2 coshv

+ ÎscoshH + eV2 coshvd2 − s1 − eV2d2g. sA4d

We denoted this eigenvalue as the square ofl+ because it
corresponds to two sites. The quantity to be compared with
the partition function per sitez in Sec. IV A is

l+ = e−H/2fÎcosh2sH/2d + eV2 sinh2sv/2d

+ Îsinh2sH/2d + eV2 cosh2sv/2dg. sA5d
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